
HistMan: A Class for Simplified Histogram
Management

Brett Viren

Physics Department

MINOS Week In The Woods, 2005

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 1 / 23

Outline

1 Description
Feature Set
Three Different Modes of Use

2 Application Programming Interface
Creation
Booking
Filling
Object Access

3 Examples of HistMan in Use
Uniqe HistMan instances in JobCModules
HistMan in BeamData “online” Monitoring

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 2 / 23

Description

1 Description
Feature Set
Three Different Modes of Use

2 Application Programming Interface

3 Examples of HistMan in Use

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 3 / 23

Description Feature Set

What is HistMan

HistMan provides three primary features:

1 A simplified API to booking and filling histograms.

2 Organizes histograms in a hierarchy of TFolders.

3 Provides for simple I/O of part or all of this hierarchy.

In addition:

Any TObject can be stored in this heirarchy

The hierarchy can:
I be held by the individual HistMan instance, or
I attached to ROOT Memory and thus visible from a TBrowser.

This hierarchy is addressed with the usual notion of a path.

The HistMan written files can be directly browsed in a bare ROOT
session w/out the HistMan library

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 4 / 23

Description Three Different Modes of Use

Three Modes of Use

A HistMan instance has three modes of use, differentiated by how it was
created:

1 Hierarchy is attached to “ROOT Memory”

2 Hierarchy is isolated to just this HistMan instance

3 Hierarchy is read from a file

Details next....

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 5 / 23

Description Three Different Modes of Use

Mode 1: HistMan Attaches Heirarchy to ROOT Memory
In this mode HistMan adds its root folder, called “HistMan” to the “ROOT
Memory” folder.

“ROOT Memory”

“HistMan”

“MyBaseFolder”

“MyFolder”
My2DHistogram
MyProfileHistogram

“MyOtherFolder”
MyGraph
MyRandomTObject

“MyOtherBaseFolder”

“MyFolder”
My2DHistogram
MyProfileHistogram

“MyOtherFolder”
MyGraph
MyRandomTObject

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 6 / 23

Description Three Different Modes of Use

Mode 1: HistMan Attaches Heirarchy to ROOT Memory

Later HistMan instances can attach to just one part of this heirachy...

“ROOT Memory”

“HistMan”

“MyBaseFolder” HistMan hm("MyBaseFolder")

“MyFolder”
My2DHistogram
MyProfileHistogram

“MyOtherFolder”
MyGraph
MyRandomTObject

“MyOtherBaseFolder”

“MyFolder”
My2DHistogram
MyProfileHistogram

“MyOtherFolder”
MyGraph
MyRandomTObject

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 6 / 23

Description Three Different Modes of Use

Mode 1: HistMan Attaches Heirarchy to ROOT Memory

...while the others remain hidden.

“ROOT Memory”

“HistMan”

“MyBaseFolder”

“MyFolder”
My2DHistogram
MyProfileHistogram

“MyOtherFolder”
MyGraph
MyRandomTObject

“MyOtherBaseFolder” HistMan hm("MyOtherBaseFolder")

“MyFolder”
My2DHistogram
MyProfileHistogram

“MyOtherFolder”
MyGraph
MyRandomTObject

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 6 / 23

Description Three Different Modes of Use

HistMan vs. the Hierarchy

It is important to understand how HistMan instances relate to the
persistent hierarchy of TFolders and TObjects held in ROOT Memory.

1 HistMan instances are rooted in only one branch of the hierarchy,
outside that branch is not accessible by the instance.

2 HistMan instances can come and go, the hierarchy remains.

3 This means multiple HistMan instance + the hierarchy actually
implements a Singleton pattern.

4 There is very little need to pass around HistMan instances.
I Pass around the path (or hard code it!) and create HistMan with that

path when needed.
I Caveat: obviously don’t want to create HistMan instances inside a

tight loop.

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 7 / 23

Description Three Different Modes of Use

Mode 2: Heirarchy Left Unattached to ROOT Memory

In this mode each instance will hold a separate hierarchy. It can optionally
be owned by the HistMan instance

“HistFolder0” (folder implicitly created in HistMan ctor)

“MyFolder”
My2DHistogram
MyProfileHistogram

“MyOtherFolder”
MyGraph
MyRandomTObject

“MyTopFolder” (folder explicitly passed to HistMan ctor)

“MyFolder”
My2DHistogram
MyProfileHistogram

“MyOtherFolder”
MyGraph
MyRandomTObject

At any time, this mode can become like Mode 1 by calling
HistMan::RegisterWithRoot

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 8 / 23

Description Three Different Modes of Use

Mode 3: HistMan given a TFile

In this mode the HistMan instance is created with a previously written.
Here

1 The in-file TDirectory based hierarchy is converted into an in-memory
TFolder based one and placed in the “HistMan” folder.

2 This “HistMan” folder is attached to “ROOT Memory”, thus visible
from a TBrowser in the exact same way as the original code that
filled the original hierarchy.

3 The TFile must be kept open as the TObjects are still owned by the
TFile.

4 More objects can be added to this hierarchy and even written out to a
new file.

Note: once a HistMan instance is created in this mode it is essentially
identical to Mode 1 as the Hierarchy is attached to “ROOT Memory”.

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 9 / 23

Application Programming Interface

1 Description

2 Application Programming Interface
Creation
Booking
Filling
Object Access

3 Examples of HistMan in Use

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 10 / 23

Application Programming Interface Creation

Constructors, one for each usage mode

HistMan(const char* path = "") Create a HistMan instance rooted
at the given path. Any thing added to the hierarchy through
this instance will be visible at
//root/ROOT memory/HistMan/path/.

HistMan(TFolder* folder, bool own=true) Create a HistMan
instance with an explicit base folder. If ”own” is true the
folder is adopted. This will not attach the hierarchy to the
“ROOT Memory” folder.

HistMan(TFile& file) Create a HistMan instance and pull out a
hierarchy from a TDirectory called ”HistMan” from the file
(such as would exist if the file was created by
HistMan::WriteOut()). If fail, will act like Histman(””)
above. If successfull, the file continues to own objects in the
hierarchy so must be kept open while they are to be used.

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 11 / 23

Application Programming Interface Booking

Using a HistMan to Book Histograms

// 1D− l i k e h i s t og r ams
template<c l a s s THType>
THType∗ Book (const char ∗ name , const char ∗ t i t l e ,

i n t nb insx , A x i s t xmin , A x i s t xmax ,
const char ∗ path=” . ” , Boo l t sumw2=kFALSE) ;

// 2D− l i k e h i s t og r ams
template<c l a s s THType>
THType∗ Book (const char ∗ name , const char ∗ t i t l e ,

i n t nb insx , A x i s t xmin , A x i s t xmax ,
i n t nb insy , A x i s t ymin , A x i s t ymax ,
const char ∗ path=” . ” , Boo l t sumw2=kFALSE) ;

// Examples :
HistMan hm(‘ ‘ my fo l d e r ’ ’) ;
hm. Book<TH1D>(‘ ‘ e r e co ’ ’ , ’ ’ Reco Neut r i no Energy ’ ’ , 1 00 , 0 , 10) ;
hm. Book<TH2D>(‘ ‘ hadmon ’ ’ , ’ ’ Hadron Monitor D i s p l a y ’ ’ ,

7 ,−40 ,40 ,7 ,−40 ,40);

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 13 / 23

Application Programming Interface Filling

Using a HistMan to Fill Histograms

bool Fill1d(const char* pathname, Axis�x, Stat t w=1.0) Lookup a 1D
histogram by pathname=”path/name” and Fill() it. If lookup or
any casting fails, false is returned and an error message is printed
at Msg level Warning.

bool Fill2d(const char* pathname, Axis t x, Axis t w, Stat t w=1.0)
Lookup a 2D histogram by pathname=”path/name” and Fill() it.
If lookup or any casting fails, false is returned and an error
message is printed at Msg level Warning.

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 15 / 23

Application Programming Interface Object Access

Explicit Access of the Hierarchy’s Contents

You can place and retrieve arbitrary TObject derived instances into the
HistMan hierarchy.

1 Place an object in the hierarchy:

TObject∗ HistMan : : Adopt (const char∗ path , TObject∗ o) ;

Will return NULL (and the object will be deleted) if an object of the
same name already exists, o.w. the object is returned. Passing in an
empty string places the object in this HistMan instance’s top level
folder.

2 Retrieve an object in a type-safe manner:

template<c l a s s THType>
THType∗ HistMan : : Get (const char∗ path) ;

Return the object with the given type and at given path in this
instance’s branch of the hierarchy, o.w. 0 is returned.

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 17 / 23

Examples of HistMan in Use

1 Description

2 Application Programming Interface

3 Examples of HistMan in Use
Uniqe HistMan instances in JobCModules
HistMan in BeamData “online” Monitoring

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 18 / 23

Examples of HistMan in Use Uniqe HistMan instances in JobCModules

Working around ROOT’s flat histogram lookup

By default, ROOT maintains a behind-the-scenes lookup of
histograms based on their names.

This is a flat namespace, which makes it possible to have name
clashes.

Name clashes are especially likely when multiple instances of the same
module exist in a job.

To avoid this, in your JobCModule, follow this example:

void MyModule : : BeginJob () {
HistMan hm(th i s−>GetUniqueName ()) ;
hm. Book<TH1D> (. . .) ;

}
JobCResu l t MyModule : : Ana (const MomNavigator ∗mom) {

HistMan hm(th i s−>GetUniqueName ()) ;
hm. F i l l 1 d (. . .) ;

}

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 20 / 23

Examples of HistMan in Use HistMan in BeamData “online” Monitoring

Requirements for BeamData “online” Monitor Process

Spot the unifying theme:

Avoid the monolithic design of the DAQ Monitoring package. (I’m
lazier than David, I don’t want to have to manage other’s
contributions!)

Avoid writing any plot consumer code by leverage existing
CDFMonitoringFwk GUI and plot server code.

But, not need the CDFMonitoringFwk to make development and
testing of the plot generators easier.

Avoid having to understanding the details of the dispatcher client API.

Use something familiar to Minos programers to lower the bar to
bringing other people into generating the plots. (Did I mention I’m
lazy?)

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 21 / 23

Examples of HistMan in Use HistMan in BeamData “online” Monitoring

The Design of BeamDataMonitoring

Solution:

Plot generators stuff fully built graphical TObjects (typically filled
TCanvas) into a HistMan, don’t care what happens to them.
Use loon as opposed to some custom main program. This gives both
file and dispatcher I/O for free.
Generate the plots in multiple standard JobCModules. Simple way for
multiple contributions w/out stepping on toes.
Had to do some work: wrote a special JobCModule,
CDFMonitoringModule which is placed at the end of the job path. It
digs into the HistMan hierarchy and pushes anything found in a
special “Monitoring” folder on to the CDFMonitoringFwk’s Server.
Alternatively, write to a file by placing HistMan::WriteOut after
JobC::Run or DataUtil/HistManModule at the end of the path.
Then click around TBrowser in a bare root session
to test the plots.

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 22 / 23

Summary

Summary

HistMan

provides a convenient and flexible way to organize and access
histograms and other TObjects.

presents a simplified histogram API.

provides a symmetric I/O mechanism.

allows us to collect all the histograms from disparate (and potentially
duplicate) job modules without name clashes.

useful for simplifying day-to-day analysis jobs and for production
infrastructure.

Brett Viren (Brookhaven National Lab) HistMan Ely 2005 23 / 23

	Description
	Feature Set
	Three Different Modes of Use

	Application Programming Interface
	Creation
	Booking
	Filling
	Object Access

	Examples of HistMan in Use
	Uniqe HistMan instances in JobCModules
	HistMan in BeamData ``online'' Monitoring

	Summary

